
Last chance! 50% off unlimited learning
Sale ends in
Given a set of hyper parameters, random search trainer provides a faster way of hyper parameter tuning. Here, the number of models to be trained can be defined by the user.
RandomSearchCV
R6Class
object.
For usage details see Methods, Arguments and Examples sections.
rst = RandomSearchTrainer$new(trainer, parameters, n_folds, scoring, n_iter) rst$fit(X_train, "target") rst$best_iteration(metric)
$new()
Initialises an instance of random search cv
$fit()
fit model to an input train data and trains the model.
$best_iteration()
returns best iteration based on a given metric. By default, uses the first scoring metric
superml trainer object, must be either XGBTrainer, LMTrainer, RFTrainer, NBTrainer
list containing parameters
number of folds to use to split the train data
scoring metric used to evaluate the best model, multiple values can be provided. currently supports: auc, accuracy, mse, rmse, logloss, mae, f1, precision, recall
number of models to be trained
# NOT RUN {
rf <- RFTrainer$new()
rst <-RandomSearchCV$new(trainer = rf,
parameters = list(n_estimators = c(100,500),
max_depth = c(5,2,10,14)),
n_folds = 3,
scoring = c('accuracy','auc'),
n_iter = 4)
data("iris")
rst$fit(iris, "Species")
rst$best_iteration()
# }
Run the code above in your browser using DataLab