Learn R Programming

survcomp (version 1.22.0)

forestplot.surv: Forest plots enables to display performance estimates of survival models

Description

Draw a forest plot together with a table of text.

Usage

forestplot.surv(labeltext, mean, lower, upper, align = NULL, is.summary = FALSE, clip = c(-Inf, Inf), xlab = "", zero = 0, graphwidth = unit(2, "inches"), col, xlog = FALSE, box.size = NULL, x.ticks = NULL, ...)

Arguments

labeltext
Matrix of strings or NAs for blank spaces
mean
Vector of centers of confidence intervals (or NAs for blank space)
lower
Vector of lower ends of confidence intervals
upper
Vector of upper ends of confidence intervals
align
Vector giving alignment (l,r,c) for columns of table
is.summary
Vector of logicals. Summary lines have bold text and diamond confidence intervals.
clip
Lower and upper limits for clipping confidence intervals to arrows
xlab
x-axis label
zero
x-axis coordinate for zero line
graphwidth
Width of confidence interval graph
xlog
If TRUE, x-axis tick marks are exponentiated
box.size
Override the default box size based on precision
x.ticks
Optional user-specified x-axis tick marks. Specify NULL to use the defaults, numeric(0) to omit the x-axis.
...
Not used.

Value

None

Details

This function is more flexible than metaplot and the plot methods for meta-analysis objects, but requires more work by the user.

In particular, it allows for a table of text, and clips confidence intervals to arrows when they exceed specified limits.

References

rmeta package, CRAN, Thomas Lumley . Functions for simple fixed and random effects meta-analysis for two-sample comparisons and cumulative meta-analyses. Draws standard summary plots, funnel plots, and computes summaries and tests for association and heterogeneity.

See Also

metaplot, forestplot

Examples

Run this code
require(rmeta)
myspace <- "    "
labeltext <- cbind(c("Gene Symbol", "AAA", "BBB", "CCC"),c(rep(myspace,4)))
bs <- rep(0.5, nrow(labeltext))                              
r.mean <- c(NA, 0.35, 0.5, 0.65)
r.lower <- c(NA, 0.33, 0.4, 0.6)
r.upper <- c(NA, 0.37, 0.6, 0.7)

forestplot.surv(labeltext=labeltext, mean=r.mean, lower=r.lower, upper=r.upper, zero=0.5,
    align=c("l"), graphwidth=unit(2, "inches"), x.ticks=seq(0.3,0.8,0.1), xlab=paste( "Forestplot Example", myspace, sep=""),
    col=meta.colors(box="royalblue", line="darkblue", zero="darkred"), box.size=bs, clip=c(0.3,0.8))

Run the code above in your browser using DataLab