Learn R Programming

survcomp (version 1.22.0)

metaplot.surv: Meta-analysis plot (forest plot)

Description

Plot confidence intervals with boxes indicating the sample size/precision and optionally a diamond indicating a summary confidence interval. This function is usually called by plot methods for meta-analysis objects. Additional, you can specifiy your own lower and upper boarder from the confidence interval.

Usage

metaplot.surv(mn, se=NULL, lower=NULL, upper=NULL, nn=NULL, labels=NULL, conf.level = .95, xlab = "", ylab = "", xlim = NULL, summn = NULL, sumse = NULL, sumlower = NULL, sumupper = NULL, sumnn = NULL, summlabel = "Summary", logeffect = FALSE, lwd = 2, boxsize = 1, zero = as.numeric(logeffect), colors, xaxt="s", logticks=TRUE, ... )

Arguments

mn
point estimates from studies
se
standard errors of mn
lower
Vector of lower ends of confidence intervals
upper
Vector of upper ends of confidence intervals
nn
precision: box ares is proportional to this. 1/se^2 is the default
labels
labels for each interval
conf.level
Confidence level for confidence intervals
xlab
label for the point estimate axis
ylab
label for the axis indexing the different studies
xlim
the range for the x axis.
summn
summary estimate
sumse
standard error of summary estimate
sumlower
lower end of confidence intervals of summary estimate
sumupper
upper end of confidence intervals of summary estimate
sumnn
precision of summary estimate
summlabel
label for summary estimate
logeffect
TRUE to display on a log scale
lwd
line width
boxsize
Scale factor for box size
zero
"Null" effect value
xaxt
use "n" for no x-axis (to add a customised one)
logticks
if TRUE and logscale, have tick values approximately equally spaced on a log scale
colors
...
Other graphical parameters

Value

This function is used for its side-effect.

See Also

forestplot.surv for more flexible plots

Examples

Run this code
metaplot.surv(mn=c(0.4,0.5,0.6), lower=c(0.35,0.4,0.57), upper=c(0.45,0.6,0.63), labels=c("A","B","C"), xlim=c(0.2,0.8), boxsize=0.5, zero=0.5, col=rmeta::meta.colors(box="royalblue",line="darkblue",zero="firebrick"))

Run the code above in your browser using DataLab