Internal function to tune SRF model, in nested CV loop
survsrf_tune(
df_tune,
predict.factors,
inner_cv = 3,
fixed_time = NaN,
randomseed = NULL,
mtry = c(3, 4, 5),
nodesize = c(10, 20, 50),
nodedepth = c(100),
verbose = FALSE,
oob = TRUE
)
output=list(modelstats, bestbrier, bestauc, bestcindex)
data frame
predictor names
k in k-fold CV, applied if oob=FALSE
NaN
random seed
tuning parameter
at which event probabilities are computed
tuning parameter
FALSE
TRUE/FALSE use out-of-bag predictions while tuning instead of cross-validation, default is TRUE and is faster