Last chance! 50% off unlimited learning
Sale ends in
Cross-validates predictive performance for SRF Ensemble
survsrfens_cv(
df,
predict.factors,
fixed_time = NaN,
outer_cv = 3,
inner_cv = 3,
repeat_cv = 2,
randomseed = NaN,
return_models = FALSE,
useCoxLasso = FALSE,
tuningparams = list(),
max_grid_size = 10,
verbose = FALSE,
suppresswarn = TRUE
)
list of outputs
data frame with the data, "time" and "event" for survival outcome
list of predictor names
at which performance metrics are computed
number of folds in outer CV, default 3
number of folds for model tuning CV, default 3
number of CV repeats, if NaN, runs once
random seed
TRUE/FALSE, if TRUE returns all trained models
TRUE/FALSE, default is FALSE
if given, list of hyperparameters, list(mtry=c(), nodedepth=c(),nodesize=c()), otherwise a wide default grid is used
number of random grid searches for model tuning
FALSE(default)/TRUE
TRUE/FALSE, TRUE by default
# \donttest{
rfcores_old <- options()$rf.cores; options(rf.cores=1)
df <- simulate_nonlinear()
ens_cv <- survsrfens_cv(df, names(df)[1:4])
summary(ens_cv)
options(rf.cores=rfcores_old)
# }
Run the code above in your browser using DataLab