Cross-validates stacked ensemble of the CoxPH and Survival Random Forest models
survsrfstack_cv(
df,
predict.factors,
fixed_time = NaN,
outer_cv = 3,
inner_cv = 3,
repeat_cv = 2,
randomseed = NaN,
return_models = FALSE,
useCoxLasso = FALSE,
tuningparams = list(),
max_grid_size = 10,
verbose = FALSE,
suppresswarn = TRUE,
impute = 0,
impute_method = "missForest"
)
data, "time" and "event" should describe survival outcome
list of predictor names
time at which performance is maximized
number of cross-validation folds for model validation
number of cross-validation folds for hyperparameters' tuning
number of CV repeats, if NaN, runs once
random seed to control tuning including data splits
TRUE/FALSE, if TRUE returns all CV objects
if CoxLasso is used (TRUE) or not (FALSE, default)
if given, list of hyperparameters, list(mtry=c(), nodedepth=c(),nodesize=c()), otherwise a wide default grid is used
number of random grid searches for model tuning
FALSE(default)/TRUE
TRUE/FALSE, TRUE by default
0/1/2/3 for no imputation / option 1 (proper way) / option 2 (faster way) / option 3 (complete cases), more in documentation and vignette
"missForest"