surveillance (version 1.12.1)

surveillance-package: [stage=build]{(meta <- packageDescription("surveillance", encoding="latin1"))$Title}

The surveillance package implements statistical methods for the retrospective modeling and prospective monitoring of epidemic phenomena in temporal and spatio-temporal contexts. Focus is on (routinely collected) public health surveillance data, but the methods just as well apply to data from environmetrics, econometrics or the social sciences. As many of the monitoring methods rely on statistical process control methodology, the package is also relevant to quality control and reliability engineering.

ll{ Package: [stage=build]{meta$Package} Version: [stage=build]{meta$Version} License: [stage=build]{meta$License} URL: http://surveillance.r-forge.r-project.org/ The package implements many typical outbreak detection procedures such as Stroup et al. (1989), Farrington et al., (1996), Rossi et al. (1999), Rogerson and Yamada (2001), a Bayesian approach (H{oe}hle, 2007), negative binomial CUSUM methods (H{oe}hle and Mazick, 2009), and a detector based on generalized likelihood ratios (H{oe}hle and Paul, 2008). However, also CUSUMs for the prospective change-point detection in binomial, beta-binomial and multinomial time series is covered based on generalized linear modeling. This includes, e.g., paired binary CUSUM described by Steiner et al. (1999) or paired comparison Bradley-Terry modeling described in H{oe}hle (2010). The package contains several real-world datasets, the ability to simulate outbreak data, visualize the results of the monitoring in temporal, spatial or spatio-temporal fashion. In dealing with time series data, the fundamental data structure of the package is the S4 class sts wrapping observations, monitoring results and date handling for multivariate time series. A recent overview of the available monitoring procedures is given by Salmon et al. (2016).

For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. The function hhh4 offers inference methods for the (multivariate) count time series models of Held et al. (2005), Paul et al. (2008), Paul and Held (2011), Held and Paul (2012), and Meyer and Held (2014). See vignette("hhh4") for a general introduction and vignette("hhh4_spacetime") for a discussion and illustration of spatial hhh4 models. Furthermore, the fully Bayesian approach for univariate time series of counts from Held et al. (2006) is implemented as function algo.twins. Self-exciting point processes are modeled through endemic-epidemic conditional intensity functions. twinSIR (H{oe}hle, 2009) models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks; see vignette("twinSIR") for an illustration. twinstim (Meyer et al., 2012) fits spatio-temporal point process models to point patterns of infective events, e.g., time-stamped geo-referenced surveillance data on infectious disease occurrence; see vignette("twinstim") for an illustration. A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2016).[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Arguments

encoding

latin1