50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

surveillance (version 1.24.0)

algo.farrington.threshold: Compute prediction interval for a new observation

Description

Depending on the current transformation h(y)={y,y,y2/3},

V(h(y0)h(μ0))=V(h(y0))+V(h(μ0))

is used to compute a prediction interval. The prediction variance consists of a component due to the variance of having a single observation and a prediction variance.

Usage

algo.farrington.threshold(pred,phi,alpha=0.01,skewness.transform="none",y)

Value

Vector of length four with lower and upper bounds of an

(1α)100% confidence interval (first two arguments) and corresponding quantile of observation y

together with the median of the predictive distribution.

Arguments

pred

A GLM prediction object

phi

Current overdispersion parameter (superfluous?)

alpha

Quantile level in Gaussian based CI, i.e. an (1α)100% confidence interval is computed.

skewness.transform

Skewness correction, i.e. one of "none", "1/2", or "2/3".

y

Observed number