hhh4
ModelGet fitted (component) means from a hhh4
model.
# S3 method for hhh4
predict(object, newSubset=object$control$subset,
type="response", ...)
matrix of fitted means for each time point (of newSubset
) and region.
fitted hhh4
model (class "hhh4"
).
subset of time points for which to return the
predictions. Defaults to the subset used for fitting the model, and
must be a subset of 1:nrow(object$stsObj)
.
the type of prediction required. The default
("response"
or, equivalently, "mean"
) is on the
scale of the response variable (mean = endemic plus epidemic components).
The alternatives are: "endemic"
, "epidemic"
,
"epi.own"
(i.e. the autoregressive part), and
"epi.neighbours"
(i.e. the spatio-temporal part).
unused (argument of the generic).
Michaela Paul and Sebastian Meyer
## simulate simple seasonal noise with reduced baseline for t >= 60
t <- 0:100
y <- rpois(length(t), exp(3 + sin(2*pi*t/52) - 2*(t >= 60)))
obj <- sts(y)
plot(obj)
## fit true model
fit <- hhh4(obj, list(end = list(f = addSeason2formula(~lock)),
data = list(lock = as.integer(t >= 60)),
family = "Poisson"))
coef(fit, amplitudeShift = TRUE, se = TRUE)
## compute predictions for a subset of the time points
stopifnot(identical(predict(fit), fitted(fit)))
plot(obj)
lines(40:80, predict(fit, newSubset = 40:80), lwd = 2)
## advanced: compute predictions for "newdata" (here, a modified covariate)
mod <- fit
mod$terms <- NULL # to be sure
mod$control$data$lock[t >= 60] <- 0.5
pred <- meanHHH(mod$coefficients, terms(mod))$mean
plot(fit, xaxis = NA)
lines(mod$control$subset, pred, lty = 2)
Run the code above in your browser using DataLab