data("imdepi")
## show the occurrence of events along time
plot(imdepi, "time", main = "Histogram of event time points")
plot(imdepi, "time", by = NULL, main = "Aggregated over both event types")
## show the distribution in space
plot(imdepi, "space", lwd = 2, col = "lavender")
## with the district-specific population density in the background,
## a scale bar, and customized point style
load(system.file("shapes", "districtsD.RData", package = "surveillance"))
districtsD$log10popdens <- log10(districtsD$POPULATION/districtsD$AREA)
keylabels <- (c(1,2,5) * rep(10^(1:3), each=3))[-1]
plot(imdepi, "space", tiles = districtsD, pop = "log10popdens",
## modify point style for better visibility on gray background
points.args = list(pch=c(1,3), col=c("orangered","blue"), lwd=2),
## metric scale bar, see proj4string(imdepi$W)
sp.layout = layout.scalebar(imdepi$W, scale=100, labels=c("0","100 km")),
## gray scale for the population density and white borders
col.regions = gray.colors(100, start=0.9, end=0.1), col = "white",
## color key is equidistant on log10(popdens) scale
at = seq(1.3, 3.7, by=0.05),
colorkey = list(labels=list(at=log10(keylabels), labels=keylabels),
title=expression("Population density per " * km^2)))
Run the code above in your browser using DataLab