twinstim
as a Poisson-glm
twinstim
is equivalent to a Poisson
regression model for the aggregated number of events,
$Y_{[t][\bm{s}],k}$, by time-space-type cell. The rate of the
corresponding Poisson distribution is
$e_{[t][\bm{s}]} \cdot \lambda([t],[\bm{s}],k)$,
where $e_{[t][\bm{s}]} = |[t]| |[\bm{s}]|$ is a multiplicative
offset. Thus, the glm
function can be used to fit
an endemic-only twinstim
. However, wrapping in glm
is
usually slower.glm_epidataCS(formula, data, ...)
data$stgrid
and possibly the variable type
for a
type-specific model."epidataCS"
.glm
. Note that family
and
offset
are fixed internally.glm
data("imdepi")
data("imdepifit")
## Fit an endemic-only twinstim() and an equivalent model wrapped in glm()
fit_twinstim <- update(imdepifit, epidemic = ~0, siaf = NULL,
optim.args=list(control=list(trace=0)), verbose=FALSE)
fit_glm <- glm_epidataCS(formula(fit_twinstim)$endemic, imdepi)
## Compare the coefficients
cbind(twinstim=coef(fit_twinstim), glm=coef(fit_glm))
stopifnot(isTRUE(all.equal(coef(fit_glm), coef(fit_twinstim),
tolerance = 0.0005, check.attributes = FALSE)))
if (surveillance.options("allExamples")) {
## also check type-specific model:
stopifnot(isTRUE(all.equal(
coef(glm_epidataCS(~0+type, imdepi)),
coef(update(fit_twinstim, endemic=~(1|type))),
tolerance = 0.0005, check.attributes = FALSE)))
}
### also compare to an equivalent endemic-only hhh4() fit
## first need to aggregate imdepi into an "sts" object
load(system.file("shapes", "districtsD.RData", package="surveillance"))
imdepi_sts <- epidataCS2sts(imdepi, freq=12, start=c(2002,1),
neighbourhood=NULL, tiles=districtsD, popcol.stgrid="popdensity")
## determine the correct offset to get an equivalent model
offset <- 2 * rep(with(subset(imdepi$stgrid, !duplicated(BLOCK)),
stop-start), ncol(imdepi_sts)) *
sum(districtsD$POPULATION) * population(imdepi_sts)
## fit the model using hhh4()
fit_hhh4 <- hhh4(imdepi_sts, control = list(
end = list(
f = addSeason2formula(~I(start/365-3.5), period=365, timevar="start"),
offset = offset
), family = "Poisson", subset = 1:nrow(imdepi_sts),
data = list(start=with(subset(imdepi$stgrid, !duplicated(BLOCK)), start))))
summary(fit_hhh4)
stopifnot(isTRUE(all.equal(coef(fit_hhh4), coef(fit_glm),
check.attributes=FALSE)))
Run the code above in your browser using DataLab