Learn R Programming

survey (version 3.29-4)

svyprcomp: Sampling-weighted principal component analysis

Description

Computes principal components using the sampling weights.

Usage

svyprcomp(formula, design, center = TRUE, scale. = FALSE, tol = NULL, scores = FALSE, ...)
## S3 method for class 'svyprcomp':
biplot(x, cols=c("black","darkred"),xlabs=NULL,weight=c("transparent","scaled","none"),
                           max.alpha=0.5,max.cex=0.5,xlim=NULL,ylim=NULL,pc.biplot=FALSE,expand=1,xlab=NULL,ylab=NULL,
                           arrow.len=0.1,
                           ...)

Arguments

formula
model formula describing variables to be used
design
survey design object.
center
Center data before analysis?
scale.
Scale to unit variance before analysis?
tol
Tolerance for omitting components from the results; a proportion of the standard deviation of the first component. The default is to keep all components.
scores
Return scores on each component? These are needed for biplot.
x
A svyprcomp object
cols
Base colors for observations and variables respectively
xlabs
Formula, or character vector, giving labels for each observation
weight
How to display the sampling weights: "scaled" changes the size of the point label, "transparent" uses opacity proportional to sampling weight, "none" changes neither.
max.alpha
Opacity for the largest sampling weight, or for all points if weight!="transparent"
max.cex
Character size (as a multiple of par("cex")) for the largest sampling weight, or for all points if weight!="scaled"
xlim,ylim,xlab,ylab
Graphical parameters
expand,arrow.len
See biplot
pc.biplot
See link{biplot.prcomp}
...
Other arguments to prcomp, or graphical parameters for biplot

Value

  • svyprcomp returns an object of class svyprcomp, similar to class prcomp but including design information

See Also

prcomp, biplot.prcomp

Examples

Run this code
data(api)
dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)

pc <- svyprcomp(~api99+api00+ell+hsg+meals+emer, design=dclus2,scale=TRUE,scores=TRUE)
pc
biplot(pc, xlabs=~dnum, weight="none")

biplot(pc, xlabs=~dnum,max.alpha=1)

biplot(pc, weight="scaled",max.cex=1.5, xlabs=~dnum)

Run the code above in your browser using DataLab