Post-stratification adjusts the sampling and replicate weights so that
the joint distribution of a set of post-stratifying variables matches
the known population joint distribution. Use rake
when
the full joint distribution is not available.
postStratify(design, strata, population, partial = FALSE, ...)
# S3 method for svyrep.design
postStratify(design, strata, population, partial = FALSE, compress=NULL,...)
# S3 method for survey.design
postStratify(design, strata, population, partial = FALSE, ...)
A survey design with replicate weights
A formula or data frame of post-stratifying variables, which must not contain missing values.
if TRUE
, ignore population strata not present in
the sample
Attempt to compress the replicate weight matrix? When
NULL
will attempt to compress if the original weight matrix
was compressed
arguments for future expansion
A new survey design object.
The population
totals can be specified as a table with the
strata variables in the margins, or as a data frame where one column
lists frequencies and the other columns list the unique combinations
of strata variables (the format produced by as.data.frame
acting on a table
object). A table must have named dimnames
to indicate the variable names.
Compressing the replicate weights will take time and may even increase memory use if there is actually little redundancy in the weight matrix (in particular if the post-stratification variables have many values and cut across PSUs).
If a svydesign
object is to be converted to a replication
design the post-stratification should be performed after conversion.
The variance estimate for replication designs follows the same
procedure as Valliant (1993) described for estimating totals. Rao et
al (2002) describe this procedure for estimating functions (and also
the GREG or g-calibration procedure, see calibrate
)
Valliant R (1993) Post-stratification and conditional variance estimation. JASA 88: 89-96
Rao JNK, Yung W, Hidiroglou MA (2002) Estimating equations for the analysis of survey data using poststratification information. Sankhya 64 Series A Part 2, 364-378.
rake
, calibrate
for other things to do
with auxiliary information
compressWeights
for information on compressing weights
# NOT RUN {
data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
rclus1<-as.svrepdesign(dclus1)
svymean(~api00, rclus1)
svytotal(~enroll, rclus1)
# post-stratify on school type
pop.types <- data.frame(stype=c("E","H","M"), Freq=c(4421,755,1018))
#or: pop.types <- xtabs(~stype, data=apipop)
#or: pop.types <- table(stype=apipop$stype)
rclus1p<-postStratify(rclus1, ~stype, pop.types)
summary(rclus1p)
svymean(~api00, rclus1p)
svytotal(~enroll, rclus1p)
## and for svydesign objects
dclus1p<-postStratify(dclus1, ~stype, pop.types)
summary(dclus1p)
svymean(~api00, dclus1p)
svytotal(~enroll, dclus1p)
# }
Run the code above in your browser using DataLab