Design-based versions of k-sample rank tests. The built-in tests are all for location hypotheses, but the user could specify others.
svyranktest(formula, design,
test = c("wilcoxon", "vanderWaerden", "median","KruskalWallis"), ...)
Model formula y~g
for outcome variable y
and group g
A survey design object
Which rank test to use: Wilcoxon, van der Waerden's normal-scores
test, Mood's test for the median, or a function f(r,N)
where
r
is the rank and N
the estimated population
size. "KruskalWallis" is a synonym for "wilcoxon" for more than two groups.
for future expansion
Object of class htest
Lumley, T., & Scott, A. J. (2013). Two-sample rank tests under complex sampling. BIOMETRIKA, 100 (4), 831-842.
# NOT RUN {
data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, fpc=~fpc, data=apiclus1)
svyranktest(ell~comp.imp, dclus1)
svyranktest(ell~comp.imp, dclus1, test="median")
svyranktest(ell~stype, dclus1)
svyranktest(ell~stype, dclus1, test="median")
## upper quartile
svyranktest(ell~comp.imp, dclus1, test=function(r,N) as.numeric(r>0.75*N))
quantiletest<-function(p){
rval<-function(r,N) as.numeric(r>(N*p))
attr(rval,"name")<-paste(p,"quantile")
rval
}
svyranktest(ell~comp.imp, dclus1, test=quantiletest(0.5))
svyranktest(ell~comp.imp, dclus1, test=quantiletest(0.75))
# }
Run the code above in your browser using DataLab