
Last chance! 50% off unlimited learning
Sale ends in
Given a function or expression computing a statistic based on sampling
weights, withReplicates
evaluates the statistic and produces a
replicate-based estimate of variance.
withReplicates(design, theta,..., return.replicates=FALSE)
# S3 method for svyrep.design
withReplicates(design, theta, rho = NULL, ...,
scale.weights=FALSE, return.replicates=FALSE)
# S3 method for svrepvar
withReplicates(design, theta, ..., return.replicates=FALSE)
# S3 method for svrepstat
withReplicates(design, theta, ..., return.replicates=FALSE)
A survey design with replicate weights (eg from svrepdesign
) or a suitable object with replicate parameter estimates
A function or expression: see Details below
If design
uses BRR weights, rho
optionally
specifies the parameter for Fay's variance estimator.
Other arguments to theta
Divide the probability weights by their sum (can help with overflow problems)
Return the replicate estimates as well as the variance?
If return.replicates=FALSE
, the weighted statistic, with the
variance matrix as the "var"
attribute. If
return.replicates=TRUE
, a list with elements theta
for
the usual return value and replicates
for the replicates.
The method for svyrep.design
objects evaluates a function or
expression using the sampling weights and then each set of replicate
weights. The method for svrepvar
objects evaluates the function
or expression on an estimated population covariance matrix and its
replicates, to simplify multivariate statistics such as structural
equation models.
For the svyrep.design
method, if theta
is a function its first argument will be a vector of
weights and the second argument will be a data frame containing the
variables from the design object. If it is an expression, the sampling weights will be available as the
variable .weights
. Variables in the design object will also
be in scope. It is possible to use global variables in the
expression, but unwise, as they may be masked by local variables
inside withReplicates
.
For the svrepvar
method a function will get the covariance
matrix as its first argument, and an expression will be evaluated with
.replicate
set to the variance matrix.
For the svrepstat
method a function will get the point estimate, and an expression will be evaluated with
.replicate
set to each replicate. The method can only be used
when the svrepstat
object includes replicates.
# NOT RUN {
data(scd)
repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1),
c(0,1,0,1,1,0))
scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights)
a<-svyratio(~alive, ~arrests, design=scdrep)
print(a$ratio)
print(a$var)
withReplicates(scdrep, quote(sum(.weights*alive)/sum(.weights*arrests)))
withReplicates(scdrep, function(w,data)
sum(w*data$alive)/sum(w*data$arrests))
data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
rclus1<-as.svrepdesign(dclus1)
varmat<-svyvar(~api00+api99+ell+meals+hsg+mobility,rclus1,return.replicates=TRUE)
withReplicates(varmat, quote( factanal(covmat=.replicate, factors=2)$unique) )
data(nhanes)
nhanesdesign <- svydesign(id=~SDMVPSU, strata=~SDMVSTRA, weights=~WTMEC2YR, nest=TRUE,data=nhanes)
logistic <- svyglm(HI_CHOL~race+agecat+RIAGENDR, design=as.svrepdesign(nhanesdesign),
family=quasibinomial, return.replicates=TRUE)
fitted<-predict(logistic, return.replicates=TRUE, type="response")
sensitivity<-function(pred,actual) mean(pred>0.1 & actual)/mean(actual)
withReplicates(fitted, sensitivity, actual=logistic$y)
# }
# NOT RUN {
library(quantreg)
data(api)
## one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
## convert to bootstrap
bclus1<-as.svrepdesign(dclus1,type="bootstrap", replicates=100)
## median regression
withReplicates(bclus1, quote(coef(rq(api00~api99, tau=0.5, weights=.weights))))
# }
Run the code above in your browser using DataLab