dom_optimal_allocation(id, Dom, H, Y, Rh=NULL,
indicator, sup_w, sup_cv,
min_size=3, correction_before=FALSE,
dataset=NULL)data.table, with variables:
id - variable with unit ID codes,
Dom - optional variables used to define population domains,
H - the unit stratum variable,
Y - variable of interest,
�code{Rh} - the expected response rate in each stratum,
indicator - variable for full surveys,
sup_w - variable for weight limit in domain of stratum,
sup_cv - Variable for maximum coeficient of variation,
poph - population size,
nh - sample size .data.table, with variables:
H - the stratum variable,
nh - sample size,
poph - population size.data.table, with variables:
H - the unit stratum variable,
Dom - optional variables used to define population domains,
sup_w - variable for weight limit in domain of stratum,
poph - population size,
nh - sample size,
sample100 - sample size for fully surveyed units,
design_weights - design weigts.data.table, with variables:
Dom - optional variables used to define population domains,
poph - population size,
nh - sample size,
sample100 - sample size for fully surveyed units,
design_weights - design weigts.data.table, with variables:
poph - population size,
nh - sample size,
sample100 - sample size for fully surveyed units.data.table, with variables:
H - stratum,
variable - the name of variable of interest,
estim - total value,
deffh - design effect,
s2h - population variance $S^2$,
nh - sample size,
Rh - response rate,
poph - population size,
nrh - expected number of respondents,
var - expected variance,
se - expected standard error,
cv - expected coeficient of variance.data.table, with variables:
Dom - domain,
variable - the name of variable of interest,
poph - the population size,
nh - sample size,
nrh - expected number of respondents,
estim - total value,
var - the expected variance,
se - the expected standart error,
cv - the expected coeficient of variance.data.table, with variables:
variable - the name of variable of interest,
poph - the population size,
nh - sample size,
nrh - expected number of respondents,
estim - total value,
var - the expected variance,
se - the expected standart error,
cv - the expected coeficient of variance.expsize, optsize#vars <- dom_optimal_allocation(id, dom, H, Y, indicator,
# sup_w, sup_cv, min_size=3,
# correction_before=FALSE,
# dataset=data)
#varsRun the code above in your browser using DataLab