Last chance! 50% off unlimited learning
Sale ends in
cch(formula, data = sys.parent(), subcoh, id, stratum=NULL, cohort.size,
method =c("Prentice","SelfPrentice","LinYing","I.Borgan","II.Borgan"),
robust=FALSE)
Surv
object as the response.
The Surv object must be of type "right"
, or of type "counting"
.1
or TRUE
for members of the
sub-cohort, 0
or FALSE
for others. If data
is a
data frame then subcoh
"LinYing"
only, if robust=TRUE
, use design-based standard errors even for
phase IThe data
argument must not have missing values for any variables
in the model. There must not be any censored observations outside the subcohort.
Self, S and Prentice, RL (1988). Asymptotic distribution theory and efficiency results for case-cohort studies. Annals of Statistics 16: 64--81.
Lin, DY and Ying, Z (1993). Cox regression with incomplete covariate measurements. Journal of the American Statistical Association 88: 1341--1349.
Barlow, WE (1994). Robust variance estimation for the case-cohort design. Biometrics 50: 1064--1072
Therneau, TM and Li, H (1999). Computing the Cox model for case-cohort designs. Lifetime Data Analysis 5: 99--112.
Borgan, $\O$, Langholz, B, Samuelsen, SO, Goldstein, L and Pogoda, J (2000) Exposure stratified case-cohort designs. Lifetime Data Analysis 6, 39-58.
twophase
and svycoxph
in the "survey" package for
more general two-phase designs. ## The complete Wilms Tumor Data
## (Breslow and Chatterjee, Applied Statistics, 1999)
## subcohort selected by simple random sampling.
##
data(nwtco)
subcoh <- nwtco$in.subcohort
selccoh <- with(nwtco, rel==1|subcoh==1)
ccoh.data <- nwtco[selccoh,]
ccoh.data$subcohort <- subcoh[selccoh]
## central-lab histology
ccoh.data$histol <- factor(ccoh.data$histol,labels=c("FH","UH"))
## tumour stage
ccoh.data$stage <- factor(ccoh.data$stage,labels=c("I","II","III","IV"))
ccoh.data$age <- ccoh.data$age/12 # Age in years
##
## Standard case-cohort analysis: simple random subcohort
##
fit.ccP <- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, cohort.size=4028)
fit.ccP
fit.ccSP <- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, cohort.size=4028, method="SelfPren")
summary(fit.ccSP)
##
## (post-)stratified on instit
##
stratsizes<-table(nwtco$instit)
fit.BI<- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, stratum=~instit, cohort.size=stratsizes,
method="I.Borgan")
summary(fit.BI)
Run the code above in your browser using DataLab