Learn R Programming

survivalPLANN (version 0.4)

predict.sPLANN: Predict Survival From a Neural Network Based on the PLANN Method

Description

This function produces survival prediction from a neural network based on the PLANN method.

Usage

# S3 method for sPLANN
predict(object, newdata = NULL, newtimes = NULL, ...)

Value

times

The times used for the predicitions.

predictions

A data frame comprising of the survival predictions from the neural network.

Arguments

object

The result of the sPLANN function.

newdata

An optional data frame comprising of new examples to be predicted. If NULL, the data frame used is the one used for training in the sPLANN function.

newtimes

A optional numeric vector comprising of times to get survival estimations. If NULL, the times are the intervals used in the sPLANN function.

...

Further arguments passed to or from other methods.

References

Biganzoli E, Boracchi P, Mariani L, and et al. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med, 17:1169-86, 1998.

Examples

Run this code
data(dataK)

splann <- sPLANN(Surv(time, event) ~ sex + stade + delay, data=dataK, inter=365.241, 
                          size=32, decay=0.01, maxit=200, MaxNWts=10000)

dnew <- data.frame(sex=c(1,2), delay=c(0,0), stade=c(0,0))

pred <- predict(splann, newdata = dnew)

# Predictions for a men or a women with no delay at the diagnostic of non-agressive cancer

plot(pred$times, c(pred$predictions[1,]), ylab="Patient survival",
  xlab="Post-diagnosis time in years", type="l")
lines(pred$times, c(pred$predictions[2,]), type="l", col=2)

Run the code above in your browser using DataLab