data(dataDIVAT2)
tune.model <- tuneCOXaic(times="times", failures="failures", data=dataDIVAT2,
cov.quanti=c("age"), cov.quali=c("hla", "retransplant", "ecd"))
tune.model$optimal$final.model # the covariate in the model with the best AIC
# The estimation of the training model with the corresponding lambda value
model <- LIB_COXaic(times="times", failures="failures", data=dataDIVAT2,
cov.quanti=c("age"), cov.quali=c("hla", "retransplant", "ecd"),
final.model=tune.model$optimal$final.model)
# The resulted predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="l", lty=1, lwd=2, ylim=c(0,1))
Run the code above in your browser using DataLab