data(dataDIVAT2)
tune.model <- tuneCOXridge(times="times", failures="failures", data=dataDIVAT2,
cov.quanti=c("age"), cov.quali=c("hla", "retransplant", "ecd"),
cv=5, lambda=seq(0, 10, by=.1), seed=42)
tune.model$optimal$lambda # the estimated lambda value
# The estimation of the training modelwith the corresponding lambda value
model <- LIB_COXridge(times="times", failures="failures", data=dataDIVAT2,
cov.quanti=c("age"), cov.quali=c("hla", "retransplant", "ecd"),
lambda=tune.model$optimal$lambda)
# The resulted predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="l", lty=1, lwd=2, ylim=c(0,1))
Run the code above in your browser using DataLab