Learn R Programming

survivalSL (version 0.98)

predict.libsl: Prediction from an Flexible Parametric Model

Description

Predict the survival based on a model or algorithm from an object of the class libsl.

Usage

# S3 method for libsl
predict(object, newdata, newtimes, ...)

Value

times

A vector of numeric values with the times of the predictions.

predictions

A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

Arguments

object

An object of the class libsl.

newdata

An optional data frame containing covariate values at which to produce predicted values. The default value is NULL, the predicted values are computed for the subjects of the training sample.

newtimes

The times at which to produce predicted values. The default value is NULL, the predicted values are computed for the observed times in the training data frame.

...

For future methods.

Examples

Run this code
data("dataDIVAT2")

# The estimation of the model from the first 200 lines

formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_PHgompertz(formula, data=dataDIVAT2[1:200,])

# Predicted survival for 2 new subjects
pred <- predict(model,
  newdata=data.frame(age=c(52,52), hla=c(0,1), retransplant=c(1,1), ecd=c(0,1)))

plot(y=pred$predictions[1,], x=pred$times, xlab="Time (years)", ylab="Predicted survival",
     col=1, type="l", lty=1, lwd=2, ylim=c(0,1))

lines(y=pred$predictions[2,], x=pred$times, col=2, type="l", lty=1, lwd=2)

legend("bottomright", col=c(1,2), lty=1, lwd=2, c("Subject #1", "Subject #2"))

Run the code above in your browser using DataLab