Helper function to return a class or constructed object for pytorch activation
function from torch.nn.modules.activation.
get_pycox_activation(
activation = "relu",
construct = TRUE,
alpha = 1,
dim = NULL,
lambd = 0.5,
min_val = -1,
max_val = 1,
negative_slope = 0.01,
num_parameters = 1L,
init = 0.25,
lower = 1/8,
upper = 1/3,
beta = 1,
threshold = 20,
value = 20
)(character(1)) Activation function method, see details for list of
implemented methods.
(logical(1)) If TRUE (default) returns constructed object, otherwise
a class.
(numeric(1)) Passed to celu and elu.
(integer(1)) Passed to glu, logsoftmax, softmax, and softmin.
(numeric(1)) Passed to hardshrink and softshrink.
(numeric(1)) Passed to hardtanh.
(numeric(1)) Passed to leakyrelu.
(integer(1)) Passed to prelu.
(numeric(1)) Passed to prelu.
(numeric(1)) Passed to rrelu.
(numeric(1)) Passed to softplus.
(numeric(1)) Passed to softplus and threshold.
(numeric(1)) Passed to threshold.
Implemented methods (with help pages) are
"celu" reticulate::py_help(torch$nn$modules$activation$CELU)
"elu" reticulate::py_help(torch$nn$modules$activation$ELU)
"gelu" reticulate::py_help(torch$nn$modules$activation$GELU)
"glu" reticulate::py_help(torch$nn$modules$activation$GLU)
"hardshrink" reticulate::py_help(torch$nn$modules$activation$Hardshrink)
"hardsigmoid" reticulate::py_help(torch$nn$modules$activation$Hardsigmoid)
"hardswish" reticulate::py_help(torch$nn$modules$activation$Hardswish)
"hardtanh" reticulate::py_help(torch$nn$modules$activation$Hardtanh)
"relu6" reticulate::py_help(torch$nn$modules$activation$ReLU6)
"leakyrelu" reticulate::py_help(torch$nn$modules$activation$LeakyReLU)
"logsigmoid" reticulate::py_help(torch$nn$modules$activation$LogSigmoid)
"logsoftmax" reticulate::py_help(torch$nn$modules$activation$LogSoftmax)
"prelu" reticulate::py_help(torch$nn$modules$activation$PReLU)
"rrelu" reticulate::py_help(torch$nn$modules$activation$RReLU)
"relu" reticulate::py_help(torch$nn$modules$activation$ReLU)
"selu" reticulate::py_help(torch$nn$modules$activation$SELU)
"sigmoid" reticulate::py_help(torch$nn$modules$activation$Sigmoid)
"softmax" reticulate::py_help(torch$nn$modules$activation$Softmax)
"softmax2d" reticulate::py_help(torch$nn$modules$activation$Softmax2d)
"softmin" reticulate::py_help(torch$nn$modules$activation$Softmin)
"softplus" reticulate::py_help(torch$nn$modules$activation$Softplus)
"softshrink" reticulate::py_help(torch$nn$modules$activation$Softshrink)
"softsign" reticulate::py_help(torch$nn$modules$activation$Softsign)
"tanh" reticulate::py_help(torch$nn$modules$activation$Tanh)
"tanhshrink" reticulate::py_help(torch$nn$modules$activation$Tanhshrink)
"threshold" reticulate::py_help(torch$nn$modules$activation$Threshold)
# NOT RUN {
if (requireNamespaces("reticulate")) {
#' # returns constructed objects
get_pycox_activation(activation = "relu", construct = TRUE)
# returns class
get_pycox_activation(activation = "selu", construct = FALSE)
}
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab