Learn R Programming

⚠️There's a newer version (0.0.6) of this package.Take me there.

Survival Support Vector Analysis

Cesaire J. K. Fouodo

Introduction

This package performs support vectors analysis for data sets with survival outcome. Three approaches are available in the package: The regression approach takes censoring into account when formulating the inequality constraints of the support vector problem. In the ranking approach, the inequality constraints set the objective to maximize the concordance index for comparable pairs of observations. The hybrid approach combines the regression and ranking constraints in the same model.

Installation

Installation from Github:

devtools::install_github("imbs-hl/survivalsvm")

CRAN release coming soon.

Usage

For usage in R, see ?survivalsvm in R. Most importantly, see the Examples section. As a first example you could try

survivalsvm(Surv(time, status) ~ ., veteran, gamma.mu = 0.1)

References

  • Van Belle, V., Pelcmans, K., Van Huffel S. and Suykens J. A.K. (2011a). Improved performance on high-dimensional survival data by application of Survival-SVM. Bioinformatics (Oxford, England) 27, 87-94.
  • Van Belle, V., Pelcmans, K., Van Huffel S. and Suykens J. A.K. (2011b). Support vector methods for survival analysis: a comparaison between ranking and regression approaches. Artificial Intelligence in medecine 53, 107-118.

Copy Link

Version

Install

install.packages('survivalsvm')

Monthly Downloads

1,344

Version

0.0.5

License

GPL

Issues

Pull Requests

Stars

Forks

Maintainer

Cesaire Fouodo

Last Published

February 5th, 2018

Functions in survivalsvm (0.0.5)

Kernel

Kernel
getKernel.VB1FitObj

VB1FitObj (ranking approach)
getKernel.default

RegFitObj
getKernpar.Kernel

Kernel
getKernpar

Kernel
getBeta.RegFitObj

RegFitObj
getBeta.default

Class RegFitObj (regression approach)
getSV

RegFitObj (regression approach)
getSV.RegFitObj

RegFitObj
getDelta.HybridObj

Hybrid (hybrid approach)
getXtrain.VB1FitObj

VB1FitObj (ranking approach)
getXtrain.default

VB1FitObj (ranking approach)
getDelta

Hybrid (hybrid approach)
predictRegFitObj

Survivalsvm predictions
getMat

Kernel
predictVB1FitObj

Survivalsvm predictions
setBeta

Class RegFitObj (regression approach)
setBincat.default

Kernel
setBeta.RegFitObj

RegFitObj
setDelta

Hybrid (hybrid approach)
setKernpar

Kernel
setKernpar.Kernel

Kernel
setMatrix.default

Kernel
setOptMeth

RegFitObj (regression approach)
getMat.default

Kernel
setXtrain.default

VB1FitObj (ranking approach)
setb0

Class RegFitObj (regression approach)
getType.Kernel

Kernel
getType

Kernel
logrank

compute the Logrank
makediff1

Diffmatrix
predict.survivalsvm

Suvirvalsvm predictions
setBeta.default

RegFitObj (regression approach)
predictHybrid

Survivalsvm predictions
setBetastar.HybridObj

Hybrid (hybrid approach)
setBincat.Kernel

Kernel
setBincat

Kernel
setMat.Kernel

Kernel
setMat

Kernel
setSV

Class RegFitObj (regression approach)
setOptMeth.default

Class RegFitObj (regression approach)
setType

Class Kernel
setType.default

Class Kernel
conindex

cindex
getAlpha

VB1FitObj (ranking approach)
getBetastar.HybridObj

Hybrid (hybrid approach)
getBetastar

Hybrid (hybrid approach)
getDelta.default

Hybrid (hybrid approach)
getAlpha.VB1FitObj

VB1FitObj (ranking approach)
getAlpha.default

VB1FitObj (ranking approach)
getBeta.HybridObj

Hybrid (hybrid approach)
getBeta

RegFitObj (regression approach)
getDifMat

VB1FitObj (ranking approach)
getLogrank

getLogrank
getKernpar.default

Kernel
getDifMat.VB1FitObj

VB1FitObj (ranking approach)
getType.default

Kernel
getDifMat.default

VB1FitObj (ranking approach)
getXtrain

VB1FitObj (ranking approach)
hybridFit

survivalsvm (hybrid approach)
printRegFitObj

print survivalsvm
kernelMatrix

Kernel
printVB1FitObj

print survivalsvm
setAlpha.default

VB1FitObj (ranking approach)
setBeta.HybridObj

Hybrid (hybrid approach)
setDelta.default

Hybrid (hybrid approach)
getOptMeth

RegFitObj (regression approach)
setDifMat

VB1FitObj (ranking approach)
setKernel.VB1FitObj

VB1FitObj (ranking approach)
getOptMeth.RegFitObj

Class RegFitObj (regression approach)
setKernel.default

RegFitObj (regression approach)
setSV.RegFitObj

RegFitObj
getSV.default

Class RegFitObj (regression approach)
getType.Diffmatrix

Diffmatrix.
setSV.default

RegFitObj (regression approach)
getb0

RegFitObj (regression approach)
getb0.RegFitObj

Class RegFitObj (regression approach)
setb0.RegFitObj

RegFitObj
setb0.default

Class RegFitObj (regression approach)
predictVB2FitObj

Survivalsvm predictions
print.survivalsvm

print survivalsvm
setAlpha

VB1FitObj (ranking approach)
setBetastar

Hybrid (hybrid approach)
setAlpha.VB1FitObj

VB1FitObj (ranking approach)
setBetastar.default

Hybrid (hybrid approach)
setKernpar.default

Kernel
setMat.Diffmatrix

Diffmatrix.
setOptMeth.RegFitObj

RegFitObj
setOptMeth.VB1FitObj

VB1FitObj (ranking approach)
survivalsvm

survivalsvm
vanbelle1Fit

survivalsvm (ranking approach)
vanbelle2Fit

survivalsvm (ranking approach)
Diffmatrix

Diffmatrix.
HybridObj

HybridObj (hybrid approach)
getBetastar.default

Hybrid (hybrid approach)
getBinca.default

Kernel
getKernel

RegFitObj (regression approach)
getKernel.RegFitObj

RegFitObj
getMat.Diffmatrix

Diffmatrix.
getMat.Kernel

Kernel
getOptMeth.VB1FitObj

VB1FitObj (ranking approach)
getOptMeth.default

RegFitObj
makediff2

Diffmatrix
makediff3

Diffmatrix
print.survivalsvmprediction

print survivalsvm
printHybrid

print survivalsvm
printVB2FitObj

print survivalsvm
regFit

survivalsvm (regression approach)
setDifMat.VB1FitObj

VB1FitObj (ranking approach)
setDifMat.default

VB1FitObj (ranking approach)
setKernel

Class RegFitObj (regression approach)
setKernel.RegFitObj

RegFitObj
setType.Kernel

Kernel
setType.Diffmatrix

Diffmatrix
setXtrain

VB1FitObj (ranking approach)
setXtrain.VB1FitObj

VB1FitObj (ranking approach)
RegFitObj

survivalsvm (regression approach)
VB1FitObj

survivalsvm (ranking approach)
VB2FitObj

survivalsvm (ranking approach)
getBincat.Kernel

Kernel
getBincat

Kernel