powered by
solves quadratic programming(QP) for SVR.
# S3 method for svr solve(a, b, lambda = 1, svr.eps = 1, kernel.function = radial.kernel, param.kernel = 1, ...)
The data matrix (n x p) with n rows (observations) on p variables (columns)
The real number valued response variable
The regularization parameter
Epsilon in epsion-insensitive loss function
User defined kernel function. See svmpath.
svmpath
Parameter(s) of the kernels. See svmpath.
Generic compatibility
SVR solution at a given lambda and epsilon
lambda
epsilon
# NOT RUN { # set.seed(1) n <- 30 p <- 50 x <- matrix(rnorm(n*p), n, p) e <- rnorm(n, 0, 1) beta <- c(1, 1, rep(0, p-2)) y <- x %*% beta + e solve.svr(x, y) # } # NOT RUN { # }
Run the code above in your browser using DataLab