Learn R Programming

svs (version 1.0.2)

fast_mca: Multiple Correspondence Analysis

Description

A fast procedure for computing multiple correspondence analysis.

Usage

fast_mca(dat, nfac = FALSE)

Arguments

dat
Input data: has to be a data frame (with any number of columns).
nfac
Logical indicating whether the number of factors (i.e. the number of columns in dat) is a divisor for the eigenvalues (principal inertias) and the coordinates.

Value

  • A list with components:
  • valThe eigenvalues or principal inertias, indicating how much each latent axis explains.
  • pos2The coordinates of all levels.

Examples

Run this code
SndT_Fra <- read.table(system.file("extdata", "SndT_Fra.txt", package = "svs"),
   header = TRUE, sep = "\t", quote = "\"", encoding = "UTF-8")
mca.SndT_Fra <- fast_mca(SndT_Fra)
mca.SndT_Fra
}
references{
Greenacre, M. (2007) emph{Correspondence analysis in practice, Second edition}. Boca Raton: Chapman and Hall/CRC.
}

Run the code above in your browser using DataLab