Learn R Programming

swgee (version 1.4)

plot.swgee: plot.swgee

Description

Produce the plot of the quadratic extrapolation curve for any covariables with measurement error in the swgee model

Usage

## S3 method for class 'swgee'
# S3 method for swgee
plot(x, covariate, ...)

Arguments

x

object of class 'swgee'

covariate

covariates specified in the formula

further arguments passed to or from other functions.

Value

Plot the simulation and extrapolation step

References

Cook, J.R. and Stefanski, L.A. (1994) Simulation-extrapolation estimation in parametric measurement error models. Journal of the American Statistical Association, 89, 1314-1328.

Carrol, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C. (2006) Measurement error in nonlinear models: A modern perspective., Second Edition. London: Chapman and Hall.

Yi, G. Y. (2008) A simulation-based marginal method for longitudinal data with dropout and mismeasured covariates. Biostatistics, 9, 501-512.

Examples

Run this code
# NOT RUN {
require(gee)
require(mvtnorm)
data(BMI)
bmidata <- BMI

rho <- 0
sigma1 <- 0.5
sigma2 <- 0.5

sigma <- matrix(0,2,2)
sigma[1,1] <- sigma1*sigma1
sigma[1,2] <- rho*sigma1*sigma2
sigma[2,1] <- sigma[1,2]
sigma[2,2] <- sigma2*sigma2

set.seed(1000)
##swgee method ##########
output2 <- swgee(bbmi~sbp+chol+age, data = bmidata, id = id, 
            family = binomial(link="logit"),corstr = "independence", 
            missingmodel = O~bbmi+sbp+chol+age, SIMEXvariable = c("sbp","chol"), 
            SIMEX.err = sigma, repeated = FALSE, B = 20, lambda = seq(0, 2, 0.5))

summary(output2)

plot(output2,"sbp")


# }

Run the code above in your browser using DataLab