fluxVar(model, react, percentage = 100,
tol = SYBIL_SETTINGS("TOLERANCE"),
lpdir = SYBIL_SETTINGS("OPT_DIRECTION"),
solver = SYBIL_SETTINGS("SOLVER"),
method = SYBIL_SETTINGS("METHOD"),
solverParm = SYBIL_SETTINGS("SOLVER_CTRL_PARM"),
fld = FALSE, verboseMode = 2, ...)
modelorg
.reactId
, character or integer.
Specifies the fluxes (variables) to analyse.
If left empty: react_id(model)
.x
percent of the optimal solution.
Default: 100
SYBIL_SETTINGS("TOLERANCE")
."min"
or
"max"
.
Default: SYBIL_SETTINGS("OPT_DIRECTION")
.SYBIL_SETTINGS
for possible values.
Default: SYBIL_SETTINGS("SOLVER")
.solver
. See SYBIL_SETTINGS
for possible values.
Default: SYBIL_SETTIN
FALSE
2
.simpleFBA
.optsol_fluxVar
.fluxVar
performs a flux variability analysis with a given
model. The minimum and maximum flux values for each reaction in the model
are calculated, which still support a given optimal functional state
$Z_{\mathrm{opt}}$. For each flux $i$ two linear programming
problems are solved
$$\begin{array}{rll} \max \textrm{ or } \min & v_i \[1ex]
\mathrm{s.\,t.} & Z = Z_{\mathrm{opt}} \[1ex]
& \mbox{\boldmath$Sv$\unboldmath} = 0 \[1ex]
& \alpha_i \leq v_i \leq \beta_i
& \quad \forall i \in {1, \ldots, n} \[1ex]
\end{array}$$
with $\bold{S}$ beeing the stoichiometric matrix, $\alpha_i$
and $\beta_i$ beeing the lower and upper bounds for flux (variable)
$i$. The total number of variables of the optimization problem is denoted
by $n$.
The result of the optimization is returned as object of class
optsol_fluxVar
containing the range of each flux still
supporting the given optimal state.
The optimal state $Z_{\mathrm{opt}}$ is calculated via flux
balance analysis (see also simpleFBA
). The objective function
here is the one given in the model.Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian, S., Kang, J., Hyduke, D. R. and Palsson, B. Ø. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6, 1290--1307.
Bernhard Ø. Palsson (2006). Systems Biology: Properties of Reconstructed Networks. Cambridge University Press.
data(Ec_core)
fv <- fluxVar(Ec_core)
plot(fv)
Run the code above in your browser using DataLab