robAna(model,
ctrlreact,
numP = 20,
verboseMode = 2, fld = FALSE, ...)modelorg.reactId , character or integer.
Specifies the control reaction -- the parameter to vary.FALSE2.sysBiolAlg.optsol_robAna.robAna performs a robustness analysis with a given
model. The flux of ctrlreact will be varied in numP steps
between the maximum and minimum value the flux of ctrlreact can reach.
For each of the numP datapoints the followong lp problem is solved
$$\begin{array}{rll} \max & \mbox{\boldmath$c$\unboldmath}^{\mathrm{T}}
\mbox{\boldmath$v$\unboldmath} \[1ex]
\mathrm{s.\,t.} & \mbox{\boldmath$Sv$\unboldmath} = 0 \[1ex]
& v_j = c_k \[1ex]
& \alpha_i \leq v_i \leq \beta_i
& \quad \forall i \in {1, \ldots, n}, i \neq j\[1ex]
\end{array}$$
with $\bold{S}$ beeing the stoichiometric matrix, $\alpha_i$
and $\beta_i$ beeing the lower and upper bounds for flux (variable)
$i$. The total number of variables of the optimization problem is denoted
by $n$. The parameter $c_k$ is varied numP times in the range
of $v_{j,\mathrm{min}}$ to $v_{j,\mathrm{max}}$.
The result of the optimization is returned as object of class
optsol_robAna containing the objective
value for each datapoint.
The extreme points of the range for ctrlreact are calculated via flux
balance analysis (see also
sysBiolAlg_fba) with the objective
function being minimization and maximization of the flux through
ctrlreact.Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian, S., Kang, J., Hyduke, D. R. and Palsson, B. Ø. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6, 1290--1307.
Bernhard Ø. Palsson (2006). Systems Biology: Properties of Reconstructed Networks. Cambridge University Press.
data(Ec_core)
rb <- robAna(Ec_core, ctrlreact = "EX_o2")
plot(rb)Run the code above in your browser using DataLab