"sysBiolAlg_lmoma"
sysBiolAlg_lmoma
holds an object of class
optObj
which is generated to meet the
requirements of a lineraized versoin of the MOMA algorithm.sysBiolAlg(model, algorithm = "lmoma", ...)
.
Arguments to ...
which are passed to method initialize
of class
sysBiolAlg_lmoma
are described in the Details section."sysBiolAlg "
, directly.initialize
method has the following arguments:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object] The problem object is built to be capable to perform a linearized version of
the MOMA algorithm with a given model, which is basically the solution of a
linear programming problem
$$\begin{array}{rll} \min & \begin{minipage}[b]{5em}
\[
\sum_{i,j=1}^n
\bigl|v_{j,\mathrm{del}} - v_{i,\mathrm{wt}}\bigr|
\]
\end{minipage} \[2em]
\mathrm{s.\,t.} & \mbox{\boldmath$Sv$\unboldmath}_{\mathrm{del}} = 0
\[1ex]
& v_i = v_{i,\mathrm{wt}}
& \quad \forall i \in {1, \ldots, n} \[1ex]
& \alpha_j \leq v_{j,\mathrm{del}} \leq \beta_j
& \quad \forall j \in {1, \ldots, n} \[1ex]
\end{array}$$
Here,
$\mbox{\boldmath$v$\unboldmath}_{\mathrm{wt}}$
is the optimal wild type flux distribution. This can be set via the argument
wtflux
. If wtflux
is NULL
(the default), the
wild type flux distribution will be calculated by a standard FBA.
If argument COBRAflag
is set to TRUE
, the linear programm is
formulated differently. Wild type and knock-out strain will be computed
simultaneously.
$$\begin{array}{rll} \min & \begin{minipage}[b]{5em}
\[
\sum_{i,j=1}^n
\bigl|v_{j,\mathrm{del}} - v_{i,\mathrm{wt}}\bigr|
\]
\end{minipage} \[2em]
\mathrm{s.\,t.} & \mbox{\boldmath$Sv$\unboldmath}_{\mathrm{wt}} = 0
\[1ex]
& \alpha_i \leq v_{i,\mathrm{wt}} \leq \beta_i
& \quad \forall i \in {1, \ldots, n} \[1ex]
& \mbox{\boldmath$Sv$\unboldmath}_{\mathrm{del}} = 0
\[1ex]
& \alpha_j \leq v_{j,\mathrm{del}} \leq \beta_j
& \quad \forall j \in {1, \ldots, n} \[1ex]
& \mbox{$\mu$}_{\mathrm{wt}} =
\mbox{\boldmath$c$\unboldmath}^{\mathrm{T}}
\mbox{\boldmath$v$\unboldmath}_{\mathrm{wt}} \[1ex]
\end{array}$$
with $\bold{S}$ beeing the stoichiometric matrix, $\alpha_i$
and $\beta_i$ beeing the lower and upper bounds for flux (variable)
$i$ ($j$ for the deletion strain).
The total number of variables of the optimization problem is denoted
by $n$.
Here,
$\mu_{\mathrm{wt}}$
is the optimal wild type growth rate. This can be set via the argument
wtobj
. If wtobj
is NULL
(the default), the
wild type growth rate will be calculated by a standard FBA.
The optimization can be executed by using optimizeProb
.
Edwards, J. S., Covert, M and Palsson, B. Ø. (2002) Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol 4, 133--140. Edwards, J. S., Ibarra, R. U. and Palsson, B. Ø. (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19, 125--130.
Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian, S., Kang, J., Hyduke, D. R. and Palsson, B. Ø. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6, 1290--1307.
Segrè, D., Vitkup, D. and Church, G. M. (2002) Analysis or optimality in natural and pertubed metabolic networks. PNAS 99, 15112--15117.
sysBiolAlg
and
superclass sysBiolAlg
.