powered by
impulseest is used to estimate impulse response coefficients from the data
impulseest
impulseest(x, M = 30, K = NULL, regul = F, lambda = 1)
an object of class idframe
idframe
Order of the FIR Model (Default:30)
30
Transport delay in the estimated impulse response (Default:NULL)
Parameter indicating whether regularization should be used. (Default:FALSE)
FALSE
The value of the regularization parameter. Valid only if regul=TRUE. (Default:1)
regul=TRUE
1
The IR Coefficients are estimated using linear least squares. Future Versions will provide support for multivariate data.
Arun K. Tangirala (2015), Principles of System Identification: Theory and Practice, CRC Press, Boca Raton. Sections 17.4.11 and 20.2
step
uk <- rnorm(1000,1) yk <- filter (uk,c(0.9,-0.4),method="recursive") + rnorm(1000,1) data <- idframe(output=data.frame(yk),input=data.frame(uk)) fit <- impulseest(data) impulseplot(fit)
Run the code above in your browser using DataLab