Learn R Programming

systemfit (version 0.8-0)

lrtest.systemfit: Likelihood Ratio test for Equation Systems

Description

Likelihood Ratio test for linear parameter restrictions in equation system.

Usage

lrtest.systemfit( resultc, resultu )

## S3 method for class 'lrtest.systemfit': print( x, digits = 4, ... )

Arguments

resultc
an object of type systemfit that contains the results of the restricted estimation.
resultu
an object of type systemfit that contains the results of the unconstrained estimation.
x
an object of class ftest.systemfit.
digits
number of digits to print.
...
currently not used.

Value

  • lrtest.systemfit returns a list of class lrtest.systemfit that includes following objects:
  • statisticthe empirical likelihood ratio statistic.
  • p.valuethe p-value of the $\chi^2$-test.
  • nRestrnumber of restrictions ($j$, degrees of freedom).

Details

The LR-statistic for sytems of equations is $$LR = T \cdot \left( log \left| \hat{ \hat{ \Sigma } }_r \right| - log \left| \hat{ \hat{ \Sigma } }_u \right| \right)$$ where $T$ is the number of observations per equation, and $\hat{\hat{\Sigma}}_r$ and $\hat{\hat{\Sigma}}_u$ are the residual covariance matrices calculated by formula "0" (see systemfit) of the restricted and unrestricted estimation, respectively. Asymptotically, $LR$ has a $\chi^2$ distribution with $j$ degrees of freedom under the null hypothesis (Green, 2003, p. 349).

References

Greene, W. H. (2003) Econometric Analysis, Fifth Edition, Prentice Hall.

See Also

systemfit, ftest.systemfit, waldtest.systemfit

Examples

Run this code
data( "Kmenta" )
eqDemand <- consump ~ price + income
eqSupply <- consump ~ price + farmPrice + trend
system <- list( demand = eqDemand, supply = eqSupply )

## unconstrained SUR estimation
fitsur <- systemfit( "SUR", system, data = Kmenta )

# create restriction matrix to impose \eqn{beta_2 = \beta_6}
R1 <- matrix( 0, nrow = 1, ncol = 7 )
R1[ 1, 2 ] <- 1
R1[ 1, 6 ] <- -1

## constrained SUR estimation
fitsur1 <- systemfit( "SUR", system, data = Kmenta, R.restr = R1 )

## perform LR-test
lrTest1 <- lrtest.systemfit( fitsur1, fitsur )
print( lrTest1 )   # rejected

# create restriction matrix to impose \eqn{beta_2 = - \beta_6}
R2 <- matrix( 0, nrow = 1, ncol = 7 )
R2[ 1, 2 ] <- 1
R2[ 1, 6 ] <- 1

## constrained SUR estimation
fitsur2 <- systemfit( "SUR", system, data = Kmenta, R.restr = R2 )

## perform LR-test
lrTest2 <- lrtest.systemfit( fitsur2, fitsur )
print( lrTest2 )   # accepted

Run the code above in your browser using DataLab