Learn R Programming

systemfit (version 0.8-5)

waldtest.systemfit: Wald-test for Equation Systems

Description

Wald-test for linear parameter restrictions in equation systems.

Usage

waldtest.systemfit( object, R.restr,
      q.restr = rep( 0, nrow( R.restr ) ) )

## S3 method for class 'waldtest.systemfit': print( x, digits = 4, ... )

Arguments

object
an object of type systemfit.
R.restr
j x k matrix to impose linear restrictions on the parameters by R.restr * $b$ = q.restr (j = number of restrictions, k = number of all parameters, $b$ = vector of all parameters).
q.restr
an optional vector with j elements to impose linear restrictions (see R.restr); default is a vector that contains only zeros.
x
an object of class waldtest.systemfit.
digits
number of digits to print.
...
currently not used.

Value

  • waldtest.systemfit returns a list of class waldtest.systemfit that includes following objects:
  • statisticthe empirical Wald statistic.
  • p.valuethe p-value of the Wald-test.
  • nRestrnumber of restrictions ($j$, degrees of freedom).

Details

The Wald-statistic for sytems of equations is $$W = ( R \hat{b} - q )' ( R \widehat{Cov} [ \hat{b} ] R' )^{-1} ( R \hat{b} - q )$$ Asymptotically, $W$ has a $\chi^2$ distribution with $j$ degrees of freedom under the null hypothesis (Greene, 2003, p. 347).

References

Greene, W. H. (2003) Econometric Analysis, Fifth Edition, Prentice Hall.

See Also

systemfit, ftest.systemfit, lrtest.systemfit

Examples

Run this code
data( "Kmenta" )
eqDemand <- consump ~ price + income
eqSupply <- consump ~ price + farmPrice + trend
system <- list( demand = eqDemand, supply = eqSupply )

## unconstrained SUR estimation
fitsur <- systemfit( "SUR", system, data=Kmenta )

# create restriction matrix to test whether \eqn{beta_2 = \beta_6}
R1 <- matrix( 0, nrow = 1, ncol = 7 )
R1[ 1, 2 ] <- 1
R1[ 1, 6 ] <- -1

## perform Wald-test
waldTest1 <- waldtest.systemfit( fitsur, R1 )
print( waldTest1 )   # rejected

# create restriction matrix to test whether \eqn{beta_2 = - \beta_6}
R2 <- matrix( 0, nrow = 1, ncol = 7 )
R2[ 1, 2 ] <- 1
R2[ 1, 6 ] <- 1

## perform Wald-test
waldTest2 <- waldtest.systemfit( fitsur, R2 )
print( waldTest2 )   # accepted

Run the code above in your browser using DataLab