Assumes a uniform distribution on the shape parameter zeta
and an
exponential distribution on the scale parameter eta
. To be used
as prior for Model.additivelink.exponential.fitness
.
Model.fitness.genlambdaparprior(shapemin = 0.75, shapemax = 1.5, ratescale,
sdshapeprob = 0.1, sdpropscale = 0.1)
Minimal Value of the shape parameter. Default: 0.75.
Maximal Value of the shape parameter. Default: 1.5.
Rate parameter for the prior distribution of the scale parameter. In the model this is on the same scale as the entries of L
Standard deviation for the additivel normally distributed random walk proposal for the shape parameter. Defaults to 0.1.
Standard deviation for the multiplicative lognormal proposals for the scale parameter.
list of functions necessary for constructing Metropolis-Hastings updates.