1-proportional default costs on external assets in [0,
1] (default to 1).
beta
1-proportional default costs on interbank assets in [0,
1] (defaults to 1).
Value
A list consisting of a vector indicating which banks
default (1=default, 0= no default) and the greatest clearing
vector.
Details
Without bankruptcy costs the approach of Eisenberg and Noe (2001)
is used using a linear programme. With bankruptcy costs, the
implementation is based on the Greatest Clearing Vector Algorithm (GA),
see Definition 3.6, Rogers & Veraart (2013).
References
Eisenberg, L. and Noe, T.H. (2001). Systemic risk in financial
systems. Management Science 47, 236--249.
Rogers, L. C. G. and Veraart, L. A. M. (2013) Failure and Rescue in
an Interbank Network, Management Science 59 (4), 882--898.
# NOT RUN {ea <- c(1/2,5/8,3/4)
el <- c(3/2,1/2,1/2)
x <- 0.5
L <- matrix(c(0,x,1-x,1-x,0,x,x,1-x,0),nrow=3)
default_clearing(L,ea,el)
default_clearing(L,ea,el, alpha=0.5, beta=0.7)
# }