# S4 method for data.frame
smap(
data,
column,
target,
lib = NULL,
pred = NULL,
E = 3,
tau = 0,
k = E + 1,
theta = c(0, 1e-04, 3e-04, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3,
4, 6, 8),
threads = length(theta)
)
Value
A list
xmap
forecast performance
varname
name of target variable
method
method of cross mapping
Arguments
data
observation data.
column
name of library variable.
target
name of target variable.
lib
(optional) libraries indices.
pred
(optional) predictions indices.
E
(optional) embedding dimensions.
tau
(optional) step of time lags.
k
(optional) number of nearest neighbors used in prediction.
theta
(optional) weighting parameter for distances.
threads
(optional) number of threads to use.
References
Sugihara G. 1994. Nonlinear forecasting for the classification of natural time series. Philosophical Transactions: Physical Sciences and Engineering, 348 (1688):477-495.