Values of type factor, character and logical are
treated as categorical. For logicals, the two categories are given the
labels `Yes` for TRUE, and `No` for FALSE. Factor levels with
zero counts are retained.
stats.default(x, useNA = NULL, quantile.type = 7)A vector or numeric, factor, character or logical values.
For categorical x, should missing values be treated as a category?
An integer from 1 to 9, passed as the type argument to function quantile.
A list. For numeric x, the list contains the numeric elements:
N: the number of non-missing values
NMISS: the number of missing values
MEAN: the mean of the non-missing values
SD: the standard deviation of the non-missing values
MIN: the minimum of the non-missing values
MEDIAN: the median of the non-missing values
CV: the percent coefficient of variation of the non-missing values
GMEAN: the geometric mean of the non-missing values if non-negative, or NA
GCV: the percent geometric coefficient of variation of the non-missing values if non-negative, or NA
qXX: various quantiles (percentiles) of the non-missing values (q01: 1%, q02.5: 2.5%, q05: 5%, q10: 10%, q25: 25% (first quartile), q33.3: 33.33333% (first tertile), q50: 50% (median, or second quartile), q66.7: 66.66667% (second tertile), q75: 75% (third quartile), q90: 90%, q95: 95%, q97.5: 97.5%, q99: 99%)
Q1: the first quartile of the non-missing values (alias q25)
Q2: the second quartile of the non-missing values (alias q50 or Median)
Q3: the third quartile of the non-missing values (alias q75)
IQR: the inter-quartile range of the non-missing values (i.e., Q3 - Q1)
T1: the first tertile of the non-missing values (alias q33.3)
T2: the second tertile of the non-missing values (alias q66.7)
If x is categorical (i.e. factor, character or logical), the list
contains a sublist for each category, where each sublist contains the
numeric elements:
FREQ: the frequency count
PCT: the percent relative frequency
# NOT RUN {
x <- exp(rnorm(100, 1, 1))
stats.default(x)
y <- factor(sample(0:1, 99, replace=TRUE), labels=c("Female", "Male"))
y[1:10] <- NA
stats.default(y)
stats.default(is.na(y))
# }
Run the code above in your browser using DataLab