# NOT RUN {
## Load Mayo Clinic Primary Biliary Cirrhosis Data
library(survival)
library(tableeasy)
data(pbc)
## Check variables
head(pbc)
##The censored data is not discussed here
pbc_full <- subset(pbc,status!=0)
pbc_full$status <- pbc_full$status-1
## Make categorical variables factors
varsToFactor <- c('status','trt','ascites','hepato','spiders','edema','stage','sex')
pbc_full[varsToFactor] <- lapply(pbc_full[varsToFactor], factor)
## Moderator variables
adj_pbc <- c('age','alk.phos','ast')
## Converts the continuous variables named 'albumin' to a categorical variable named 'albumin_2'.
albumin_2 <- div_quantile('albumin',div = c(2),pbc_full)
pbc_full <- data.frame(pbc_full,'albumin_2' = albumin_2)
## General linear regression:
table3(x = 'albumin_2', y = 'bili',
adj = c(), data = pbc_full,
split_var = c('age','alk.phos','ast','trt'), split_div = list(),
outformat = 1)
## Logistic regression:
table3(x = 'albumin_2', y = 'status',
adj = adj_pbc, data = pbc_full,
split_var = c('age','alk.phos','ast','trt'), split_div = list(c('2','3'),c('3')),
outformat = 2,method = 'logistic')
## Cox proportional hazards regression:
table3(x = 'albumin_2',y = 'status',y_time = 'time',
adj = adj_pbc,data = pbc_full,
split_var = c('age','alk.phos','ast','trt'), split_div = list(c(45),c(1500,1700),c(),c()),
outformat = 3,method = 'cox')
# }
Run the code above in your browser using DataLab