
Last chance! 50% off unlimited learning
Sale ends in
Plots a Bertin, Ford (battleship curve) or Dice-Leraas diagram.
plot_bertin(object, ...)plot_ford(object, ...)
# S4 method for CountMatrix
plot_bertin(object, threshold = NULL,
scale = NULL)
# S4 method for CountMatrix
plot_ford(object, EPPM = FALSE)
An object to be plotted.
Currently not used.
A function
that takes a numeric vector as
argument and returns a numeric threshold value (see below).
If NULL
(the default), no threshold is computed.
A function
used to scale each variable,
that takes a numeric vector as argument and returns a numeric vector.
If NULL
(the default), no scaling is performed.
A logical
scalar: should the EPPM be drawn (see
details)?
A ggplot
object.
As de Falguerolles et al. (1997) points out: "In abstract terms, a Bertin matrix is a matrix of displays. [...] To fix ideas, think of a data matrix, variable by case, with real valued variables. For each variable, draw a bar chart of variable value by case. High-light all bars representing a value above some sample threshold for that variable."
If EPPM
is TRUE
and if a relative abundance is greater than
the mean percentage of the type, the exceeding part is highlighted.
This positive difference from the column mean percentage (in french "<U+00E9>cart
positif au pourcentage moyen", EPPM) represents a deviation from the
situation of statistical independence. As independence can be interpreted as
the absence of relationships between types and the chronological order of
the assemblages, EPPM
is a useful graphical tool to explore
significance of relationship between rows and columns related to
seriation
(Desachy 2004).
Bertin, J. (1977). La graphique et le traitement graphique de l'information. Paris: Flammarion. Nouvelle Biblioth<U+00E8>que Scientifique.
de Falguerolles, A., Friedrich, F. & Sawitzki, G. (1997). A Tribute to J. Bertin's Graphical Data Analysis. In W. Badilla & F. Faulbaum (eds.), SoftStat '97: Advances in Statistical Software 6. Stuttgart: Lucius & Lucius, p. 11-20.
Desachy, B. (2004). Le s<U+00E9>riographe EPPM: un outil informatis<U+00E9> de s<U+00E9>riation graphique pour tableaux de comptages. Revue arch<U+00E9>ologique de Picardie, 3(1), 39-56. DOI: 10.3406/pica.2004.2396.
Ford, J. A. (1962). A quantitative method for deriving cultural chronology. Washington, DC: Pan American Union. Technical manual 1.
Other plot: plot_date
,
plot_line
, plot_matrix
,
plot_spot
# NOT RUN {
## Abundance data
## Coerce dataset to a count matrix
mississippi_count <- as_count(mississippi)
## Plot a Bertin diagram...
## ...without threshold
plot_bertin(mississippi_count, threshold = NULL)
## ...with the variable mean as threshold
plot_bertin(mississippi_count, threshold = mean)
## ...with variables scaled to 0-1
scale_01 <- function(x) (x - min(x)) / (max(x) - min(x))
plot_bertin(mississippi_count, threshold = mean, scale = scale_01)
## Abundance data
## Coerce dataset to a count matrix (data from Desachy 2004)
compiegne_count <- as_count(compiegne)
## Plot a Ford diagram...
## ...without threshold
plot_ford(compiegne_count)
## ...with EPPM
plot_ford(compiegne_count, EPPM = TRUE)
# }
Run the code above in your browser using DataLab