# NOT RUN {
## Mean Ceramic Date
## Coerce the zuni dataset to an abundance (count) matrix
zuni_counts <- as_count(zuni)
## Set the start and end dates for each ceramic type
zuni_dates <- list(
LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050),
GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150),
RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350),
PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225),
SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300),
PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450)
)
## Calculate date midpoints and errors
zuni_mid <- vapply(X = zuni_dates, FUN = mean, FUN.VALUE = numeric(1))
zuni_error <- vapply(X = zuni_dates, FUN = diff, FUN.VALUE = numeric(1)) / 2
## Calculate MCD
## (we use a bootstrapping procedure to estimate the confidence interval)
zuni_mcd <- date_mcd(zuni_counts, dates = zuni_mid, errors = zuni_error)
head(zuni_mcd)
## Plot dates
keep_sites <- c("CS11", "CS12", "CS144", "CS195", "CS40", "LZ0219", "LZ0280",
"LZ0367", "LZ0508", "LZ0560", "LZ1076", "LZ1087")
set_dates(zuni_counts) <- list(value = zuni_mcd$date, error = zuni_mcd$error)
plot_date(zuni_counts, select = keep_sites, sort = "asc") +
ggplot2::theme_bw()
## Event and accumulation dates (Bellanger et al.)
## See the vignette:
# }
# NOT RUN {
utils::vignette("dating", package = "tabula")
# }
Run the code above in your browser using DataLab