Learn R Programming

tabula (version 2.0.0)

resample: Resampling Methods

Description

  • resample() simulate observations from a multinomial distribution.

  • bootstrap() generate bootstrap estimations of a statistic.

  • jackknife() generate jackknife estimations of a statistic.

Usage

resample(object, ...)

# S4 method for DiversityIndex bootstrap(object, n = 1000, f = NULL)

# S4 method for DiversityIndex jackknife(object)

# S4 method for numeric resample(object, do, n, size = sum(object), ..., f = NULL)

Value

If f is NULL, resample() returns the n values of do. Else, returns the result of f applied to the n values of do.

If f is NULL, bootstrap() and jackknife() return a data.frame

with the following elements (else, returns the result of f applied to the n values of do) :

original

The observed value of do applied to object.

mean

The bootstrap/jackknife estimate of mean of do.

bias

The bootstrap/jackknife estimate of bias of do.

error

The boostrap/jackknife estimate of standard error of do.

Arguments

object

A numeric vector of count data (absolute frequencies).

...

Extra arguments passed to do.

n

A non-negative integer specifying the number of bootstrap replications.

f

A function that takes a single numeric vector (the result of do) as argument.

do

A function that takes object as an argument and returns a single numeric value.

size

A non-negative integer specifying the sample size.

Author

N. Frerebeau

See Also

Examples

Run this code
## Sample observations from a multinomial distribution
x <- sample(1:100, 50, TRUE)
resample(x, do = median, n = 100)

## Estimate the 25th, 50th and 95th percentiles
quant <- function(x) { quantile(x, probs = c(0.25, 0.50, 0.75)) }
resample(x, n = 100, do = median, f = quant)

Run the code above in your browser using DataLab