Learn R Programming

tailDepFun (version 1.0.0)

AsymVarMaxLinear: Asymptotic variance matrix for the max-linear model.

Description

Computes the asymptotic variance matrix for the max-linear model, estimated using the weighted least squares estimator.

Usage

AsymVarMaxLinear(indices, par, Bmatrix = NULL)

Arguments

indices
A $q$ x $d$ matrix containing at least 2 non-zero elements per row, representing the values in which we will evaluate the stable tail dependence function.
par
The parameter vector.
Bmatrix
A function that converts the parameter vector theta to a parameter matrix B. If NULL, then a simple 2-factor model is assumed.

Value

A q by q matrix.

References

Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2016). A continuous updating weighted least squares estimator of tail dependence in high dimensions. See http://arxiv.org/abs/1601.04826.

See Also

selectGrid

Examples

Run this code
indices <- selectGrid(c(0,0.5,1), d = 3, nonzero = 3)
AsymVarMaxLinear(indices, par = c(0.1,0.55,0.75))

Run the code above in your browser using DataLab