if (FALSE) { # rlang::is_installed(c("probably", "modeldata"))
library(dplyr)
library(modeldata)
head(two_class_example)
# `predicted` gives hard class predictions based on probabilities
two_class_example |> count(predicted)
# when probabilities are within (.25, .75), consider them equivocal
tlr <-
tailor() |>
adjust_equivocal_zone(value = 1 / 4)
tlr
# fit by supplying column names.
tlr_fit <- fit(
tlr,
two_class_example,
outcome = c(truth),
estimate = c(predicted),
probabilities = c(Class1, Class2)
)
tlr_fit
# adjust hard class predictions
predict(tlr_fit, two_class_example) |> count(predicted)
}
Run the code above in your browser using DataLab