Learn R Programming

targeted (version 0.5)

targeted-package: targeted: Targeted Inference

Description

Various methods for targeted and semiparametric inference including augmented inverse probability weighted (AIPW) estimators for missing data and causal inference (Bang and Robins (2005) tools:::Rd_expr_doi("10.1111/j.1541-0420.2005.00377.x")), variable importance and conditional average treatment effects (CATE) (van der Laan (2006) tools:::Rd_expr_doi("10.2202/1557-4679.1008")), estimators for risk differences and relative risks (Richardson et al. (2017) tools:::Rd_expr_doi("10.1080/01621459.2016.1192546")), assumption lean inference for generalized linear model parameters (Vansteelandt et al. (2022) tools:::Rd_expr_doi("10.1111/rssb.12504")).

Methods for targeted and semiparametric inference.

Arguments

Author

Maintainer: Klaus K. Holst klaus@holst.it

Authors:

Klaus K. Holst (Maintainer) klaus@holst.it

See Also

Useful links:

Examples

Run this code
if (FALSE) {
example(riskreg)
example(cate)
example(ate)
example(calibration)
}

Run the code above in your browser using DataLab