Learn R Programming

targeted (version 0.6)

RATE.surv: Responder Average Treatment Effect

Description

Estimation of the Average Treatment Effect among Responders for Survival Outcomes

Usage

RATE.surv(
  response,
  post.treatment,
  treatment,
  censoring,
  tau,
  data,
  M = 5,
  pr.treatment,
  call.response,
  args.response = list(),
  SL.args.post.treatment = list(family = binomial(), SL.library = c("SL.mean", "SL.glm")),
  call.censoring,
  args.censoring = list(),
  preprocess = NULL,
  ...
)

Value

estimate object

Arguments

response

Response formula (e.g., Surv(time, event) ~ D + W).

post.treatment

Post treatment marker formula (e.g., D ~ W)

treatment

Treatment formula (e.g, A ~ 1)

censoring

Censoring formula (e.g., Surv(time, event == 0) ~ D + A + W)).

tau

Time-point of interest, see Details.

data

data.frame

M

Number of folds in cross-fitting (M=1 is no cross-fitting)

pr.treatment

(optional) Randomization probability of treatment.

call.response

Model call for the response model (e.g. "mets::phreg").

args.response

Additional arguments to the response model.

SL.args.post.treatment

Arguments to SuperLearner for the post treatment indicator

call.censoring

Similar to call.response.

args.censoring

Similar to args.response.

preprocess

(optional) Data preprocessing function

...

Additional arguments to lower level functions

Author

Andreas Nordland, Klaus K. Holst

Details

Estimation of $$ \frac{P(T \leq \tau|A=1) - P(T \leq \tau|A=1)}{E[D|A=1]} $$ under right censoring based on plug-in estimates of \(P(T \leq \tau|A=a)\) and \(E[D|A=1]\).

An efficient one-step estimator of \(P(T \leq \tau|A=a)\) is constructed using the efficient influence function $$ \frac{I\{A=a\}}{P(A = a)} \Big(\frac{\Delta}{S^c_{0}(\tilde T|X)} I\{\tilde T \leq \tau\} + \int_0^\tau \frac{S_0(u|X)-S_0(\tau|X)}{S_0(u|X)S^c_0(u|X)} d M^c_0(u|X)\Big) $$ $$ + \Big(1 - \frac{I\{A=a\}}{P(A = a)}\Big)F_0(\tau|A=a, W) - P(T \leq \tau|A=a). $$ An efficient one-step estimator of \(E[D|A=1]\) is constructed using the efficient influence function $$ \frac{A}{P(A = 1)}\left(D-E[D|A=1, W]\right) + E[D|A=1, W] -E[D|A=1]. $$