Create a resources
argument for tar_target()
or tar_option_set()
.
tar_resources(
aws = tar_option_get("resources")$aws,
clustermq = tar_option_get("resources")$clustermq,
crew = tar_option_get("resources")$crew,
custom_format = tar_option_get("resources")$custom_format,
feather = tar_option_get("resources")$feather,
fst = tar_option_get("resources")$fst,
future = tar_option_get("resources")$future,
gcp = tar_option_get("resources")$gcp,
network = tar_option_get("resources")$network,
parquet = tar_option_get("resources")$parquet,
qs = tar_option_get("resources")$qs,
repository_cas = tar_option_get("resources")$repository_cas,
url = tar_option_get("resources")$url
)
A list of objects of class "tar_resources"
with
non-default settings of various optional backends for data storage
and high-performance computing.
Output of function tar_resources_aws()
.
Amazon Web Services (AWS) S3 storage settings for
tar_target(..., repository = "aws")
.
See the cloud storage section of
https://books.ropensci.org/targets/data.html
for details for instructions.
Output of function tar_resources_clustermq()
.
Optional clustermq
settings for tar_make_clustermq()
,
including the log_worker
and template
arguments of
clustermq::workers()
. clustermq
workers are persistent,
so there is not a one-to-one correspondence between workers and targets.
The clustermq
resources apply to the workers, not the targets.
So the correct way to assign clustermq
resources is through
tar_option_set()
, not tar_target()
. clustermq
resources
in individual tar_target()
calls will be ignored.
Output of function tar_resources_crew()
with target-specific settings for integration with the
crew
R package. These settings are arguments to the push()
method of the controller or controller group
object which control things like
auto-scaling behavior and the controller to use in the case
of a controller group.
Output of function tar_resources_custom_format()
with configuration details for tar_format()
storage formats.
Output of function tar_resources_feather()
.
Non-default arguments to arrow::read_feather()
and
arrow::write_feather()
for arrow
/feather-based storage formats.
Applies to all formats ending with the "_feather"
suffix.
For details on formats, see the format
argument of tar_target()
.
Output of function tar_resources_fst()
.
Non-default arguments to fst::read_fst()
and
fst::write_fst()
for fst
-based storage formats.
Applies to all formats ending with "fst"
in the name.
For details on formats, see the format
argument of tar_target()
.
Output of function tar_resources_future()
.
Optional future
settings for tar_make_future()
,
including the resources
argument of
future::future()
, which can include values to insert in
template placeholders in future.batchtools
template files.
This is how to supply the resources
argument of future::future()
for targets
.
Resources supplied through
future::plan()
and future::tweak()
are completely ignored.
Output of function tar_resources_gcp()
.
Google Cloud Storage bucket settings for
tar_target(..., repository = "gcp")
.
See the cloud storage section of
https://books.ropensci.org/targets/data.html
for details for instructions.
Output of function tar_resources_network()
.
Settings to configure how to handle unreliable network connections
in the case of uploading, downloading, and checking data
in situations that rely on network file systems or HTTP/HTTPS requests.
Examples include retries and timeouts for internal storage management
operations for storage = "worker"
or format = "file"
(on network file systems),
format = "url"
, repository = "aws"
, and
repository = "gcp"
. These settings do not
apply to actions you take in the custom R command of the target.
Output of function tar_resources_parquet()
.
Non-default arguments to arrow::read_parquet()
and
arrow::write_parquet()
for arrow
/parquet-based storage formats.
Applies to all formats ending with the "_parquet"
suffix.
For details on formats, see the format
argument of tar_target()
.
Output of function tar_resources_qs()
.
Non-default arguments to qs2::qs_read()
and
qs2::qs_save()
for targets with format = "qs"
.
For details on formats, see the format
argument of tar_target()
.
Output of function tar_resources_repository_cas()
with configuration details for tar_repository_cas()
storage
repositories.
Output of function tar_resources_url()
.
Non-default settings for storage formats ending with the "_url"
suffix.
These settings include the curl
handle for extra control over HTTP
requests. For details on formats, see the format
argument of
tar_target()
.
Functions tar_target()
and tar_option_set()
each takes an optional resources
argument to supply
non-default settings of various optional backends for data storage
and high-performance computing. The tar_resources()
function
is a helper to supply those settings in the correct manner.
In targets
version 0.12.2 and above, resources are inherited one-by-one
in nested fashion from tar_option_get("resources")
.
For example, suppose you set
tar_option_set(resources = tar_resources(aws = my_aws))
,
where my_aws
equals tar_resources_aws(bucket = "x", prefix = "y")
.
Then, tar_target(data, get_data()
will have bucket "x"
and
prefix "y"
. In addition, if new_resources
equals
tar_resources(aws = tar_resources_aws(bucket = "z")))
, then
tar_target(data, get_data(), resources = new_resources)
will use the new bucket "z"
, but it will still use the prefix "y"
supplied through tar_option_set()
. (In targets
0.12.1 and below,
options like prefix
do not carry over from tar_option_set()
if you
supply non-default resources to tar_target()
.)
Other resources:
tar_resources_aws()
,
tar_resources_clustermq()
,
tar_resources_crew()
,
tar_resources_custom_format()
,
tar_resources_feather()
,
tar_resources_fst()
,
tar_resources_future()
,
tar_resources_gcp()
,
tar_resources_network()
,
tar_resources_parquet()
,
tar_resources_qs()
,
tar_resources_repository_cas()
,
tar_resources_url()
# Somewhere in you target script file (usually _targets.R):
tar_target(
name,
command(),
format = "qs",
resources = tar_resources(
qs = tar_resources_qs(preset = "fast"),
future = tar_resources_future(resources = list(n_cores = 1))
)
)
Run the code above in your browser using DataLab