## Not run:
# if (requireNamespace("vegan", quietly = TRUE)) {
# # use dune dataset
# library("vegan")
# data(dune, package='vegan')
# species <- c("Bellis perennis", "Empetrum nigrum", "Juncus bufonius",
# "Juncus articulatus",
# "Aira praecox", "Eleocharis parvula", "Rumex acetosa", "Vicia lathyroides",
# "Brachythecium rutabulum", "Ranunculus flammula", "Cirsium arvense",
# "Hypochaeris radicata", "Leontodon autumnalis", "Potentilla palustris",
# "Poa pratensis", "Calliergonella cuspidata", "Trifolium pratense",
# "Trifolium repens", "Anthoxanthum odoratum", "Salix repens", "Achillea
# millefolium",
# "Poa trivialis", "Chenopodium album", "Elymus repens", "Sagina procumbens",
# "Plantago lanceolata", "Agrostis stolonifera", "Lolium perenne", "Alopecurus
# geniculatus", "Bromus hordeaceus")
# colnames(dune) <- species
#
# # aggregate sample to families
# (agg <- tax_agg(dune, rank = 'family', db = 'ncbi'))
#
# # extract aggregated community data matrix for further usage
# agg$x
# # check which taxa have been aggregated
# agg$by
# }
#
# # A use case where there are different taxonomic levels in the same dataset
# spnames <- c('Puma','Ursus americanus','Ursidae')
# df <- data.frame(c(1,2,3), c(11,12,13), c(1,4,50))
# names(df) <- spnames
# out <- tax_agg(df, rank = 'family', db='itis')
# out$x
#
# # You can input a matrix too
# mat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol = 3,
# dimnames=list(NULL, c('Puma concolor','Ursus americanus','Ailuropoda melanoleuca')))
# tax_agg(mat, rank = 'family', db='itis')
# ## End(Not run)
Run the code above in your browser using DataLab