Learn R Programming

teal.modules.general (version 0.3.0)

tm_g_scatterplotmatrix: teal module: Scatterplot matrix

Description

Generates a scatterplot matrix from selected variables from datasets. Each plot within the matrix represents the relationship between two variables, providing the overview of correlations and distributions across selected data.

Usage

tm_g_scatterplotmatrix(
  label = "Scatterplot Matrix",
  variables,
  plot_height = c(600, 200, 2000),
  plot_width = NULL,
  pre_output = NULL,
  post_output = NULL
)

Value

Object of class teal_module to be used in teal applications.

Arguments

label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

variables

(data_extract_spec or list of multiple data_extract_spec) Specifies plotting variables from an incoming dataset with filtering and selecting. In case of data_extract_spec use select_spec(..., ordered = TRUE) if plot elements should be rendered according to selection order.

plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

Examples

Run this code
# general data example
data <- teal_data()
data <- within(data, {
  countries <- data.frame(
    id = c("DE", "FR", "IT", "ES", "PT", "GR", "NL", "BE", "LU", "AT"),
    government = factor(
      c(2, 2, 2, 1, 2, 2, 1, 1, 1, 2),
      labels = c("Monarchy", "Republic")
    ),
    language_family = factor(
      c(1, 3, 3, 3, 3, 2, 1, 1, 3, 1),
      labels = c("Germanic", "Hellenic", "Romance")
    ),
    population = c(83, 67, 60, 47, 10, 11, 17, 11, 0.6, 9),
    area = c(357, 551, 301, 505, 92, 132, 41, 30, 2.6, 83),
    gdp = c(3.4, 2.7, 2.1, 1.4, 0.3, 0.2, 0.7, 0.5, 0.1, 0.4),
    debt = c(2.1, 2.3, 2.4, 2.6, 2.3, 2.4, 2.3, 2.4, 2.3, 2.4)
  )
  sales <- data.frame(
    id = 1:50,
    country_id = sample(
      c("DE", "FR", "IT", "ES", "PT", "GR", "NL", "BE", "LU", "AT"),
      size = 50,
      replace = TRUE
    ),
    year = sort(sample(2010:2020, 50, replace = TRUE)),
    venue = sample(c("small", "medium", "large", "online"), 50, replace = TRUE),
    cancelled = sample(c(TRUE, FALSE), 50, replace = TRUE),
    quantity = rnorm(50, 100, 20),
    costs = rnorm(50, 80, 20),
    profit = rnorm(50, 20, 10)
  )
})
datanames(data) <- c("countries", "sales")
join_keys(data) <- join_keys(
  join_key("countries", "countries", "id"),
  join_key("sales", "sales", "id"),
  join_key("countries", "sales", c("id" = "country_id"))
)

app <- init(
  data = data,
  modules = modules(
    tm_g_scatterplotmatrix(
      label = "Scatterplot matrix",
      variables = list(
        data_extract_spec(
          dataname = "countries",
          select = select_spec(
            label = "Select variables:",
            choices = variable_choices(data[["countries"]]),
            selected = c("area", "gdp", "debt"),
            multiple = TRUE,
            ordered = TRUE,
            fixed = FALSE
          )
        ),
        data_extract_spec(
          dataname = "sales",
          filter = filter_spec(
            label = "Select variable:",
            vars = "country_id",
            choices = value_choices(data[["sales"]], "country_id"),
            selected = c("DE", "FR", "IT", "ES", "PT", "GR", "NL", "BE", "LU", "AT"),
            multiple = TRUE
          ),
          select = select_spec(
            label = "Select variables:",
            choices = variable_choices(data[["sales"]], c("quantity", "costs", "profit")),
            selected = c("quantity", "costs", "profit"),
            multiple = TRUE,
            ordered = TRUE,
            fixed = FALSE
          )
        )
      )
    )
  )
)
if (interactive()) {
  shinyApp(app$ui, app$server)
}

# CDISC data example
data <- teal_data()
data <- within(data, {
  ADSL <- rADSL
  ADRS <- rADRS
})
datanames(data) <- c("ADSL", "ADRS")
join_keys(data) <- default_cdisc_join_keys[datanames(data)]

app <- init(
  data = data,
  modules = modules(
    tm_g_scatterplotmatrix(
      label = "Scatterplot matrix",
      variables = list(
        data_extract_spec(
          dataname = "ADSL",
          select = select_spec(
            label = "Select variables:",
            choices = variable_choices(data[["ADSL"]]),
            selected = c("AGE", "RACE", "SEX"),
            multiple = TRUE,
            ordered = TRUE,
            fixed = FALSE
          )
        ),
        data_extract_spec(
          dataname = "ADRS",
          filter = filter_spec(
            label = "Select endpoints:",
            vars = c("PARAMCD", "AVISIT"),
            choices = value_choices(data[["ADRS"]], c("PARAMCD", "AVISIT"), c("PARAM", "AVISIT")),
            selected = "INVET - END OF INDUCTION",
            multiple = TRUE
          ),
          select = select_spec(
            label = "Select variables:",
            choices = variable_choices(data[["ADRS"]]),
            selected = c("AGE", "AVAL", "ADY"),
            multiple = TRUE,
            ordered = TRUE,
            fixed = FALSE
          )
        )
      )
    )
  )
)
if (interactive()) {
  shinyApp(app$ui, app$server)
}

Run the code above in your browser using DataLab