library(teal.widgets)
# general data example
data <- teal_data()
data <- within(data, {
CO2 <- CO2
CO2[["primary_key"]] <- seq_len(nrow(CO2))
})
datanames(data) <- "CO2"
join_keys(data) <- join_keys(join_key("CO2", "CO2", "primary_key"))
vars <- choices_selected(variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")))
app <- init(
data = data,
modules = modules(
tm_outliers(
outlier_var = list(
data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]], c("conc", "uptake")),
selected = "uptake",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "CO2",
filter = filter_spec(
vars = vars,
choices = value_choices(data[["CO2"]], vars$selected),
selected = value_choices(data[["CO2"]], vars$selected),
multiple = TRUE
)
)
),
ggplot2_args = list(
ggplot2_args(
labs = list(subtitle = "Plot generated by Outliers Module")
)
)
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
# CDISC data example
data <- teal_data()
data <- within(data, {
ADSL <- rADSL
})
datanames(data) <- "ADSL"
join_keys(data) <- default_cdisc_join_keys[datanames(data)]
fact_vars_adsl <- names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor)))
vars <- choices_selected(variable_choices(data[["ADSL"]], fact_vars_adsl))
app <- init(
data = data,
modules = modules(
tm_outliers(
outlier_var = list(
data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")),
selected = "AGE",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "ADSL",
filter = filter_spec(
vars = vars,
choices = value_choices(data[["ADSL"]], vars$selected),
selected = value_choices(data[["ADSL"]], vars$selected),
multiple = TRUE
)
)
),
ggplot2_args = list(
ggplot2_args(
labs = list(subtitle = "Plot generated by Outliers Module")
)
)
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
Run the code above in your browser using DataLab