
Last chance! 50% off unlimited learning
Sale ends in
Kuiper's test statistic is a rotation-invariant Kolmogorov-type test statistic. The critical values of a modified Kuiper's test statistic are used according to the tabulation given in Stephens (1970).
kuiper_test(x, alpha = 0, axial = TRUE, quiet = FALSE)
list containing the test statistic statistic
and the significance
level p.value
.
numeric vector containing the circular data which are expressed in degrees
Significance level of the test. Valid levels are 0.01
, 0.05
, and 0.1
.
This argument may be omitted (NULL
, the default), in which case, a range for the p-value will be returned.
logical. Whether the data are axial, i.e. TRUE
, the default) or circular, i.e. FALSE
).
logical. Prints the test's decision.
If statistic > p.value
, the null hypothesis is rejected.
If not, randomness (uniform distribution) cannot be excluded.
# Example data from Mardia and Jupp (2001), pp. 93
pidgeon_homing <- c(55, 60, 65, 95, 100, 110, 260, 275, 285, 295)
kuiper_test(pidgeon_homing, alpha = .05)
# San Andreas Fault Data:
data(san_andreas)
data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
kuiper_test(sa.por$azi.PoR, alpha = .05)
Run the code above in your browser using DataLab