
Last chance! 50% off unlimited learning
Sale ends in
Performs a Rayleigh test for uniformity of circular/directional data by assessing the significance of the mean resultant length.
rayleigh_test(x, mu = NULL, axial = TRUE, quiet = FALSE)
a list with the components:
R
or C
mean resultant length or the dispersion (if mu
is
specified). Small values of R
(large values of C
) will reject
uniformity. Negative values of C
indicate that vectors point in opposite
directions (also lead to rejection).
statistic
test statistic
p.value
significance level of the test statistic
numeric vector. Values in degrees
(optional) The specified or known mean direction (in degrees) in alternative hypothesis
logical. Whether the data are axial, i.e. TRUE
, the default) or directional, i.e. FALSE
).
logical. Prints the test's decision.
angles are randomly distributed around the circle.
angles are from unimodal distribution with unknown mean
direction and mean resultant length (when mu
is NULL
. Alternatively (when
mu
is specified),
angles are uniformly distributed around a specified direction.
If statistic > p.value
, the null hypothesis is rejected,
i.e. the length of the mean resultant differs significantly from zero, and
the angles are not randomly distributed.
Mardia and Jupp (2000). Directional Statistics. John Wiley and Sons.
Wilkie (1983): Rayleigh Test for Randomness of Circular Data. Appl. Statist. 32, No. 3, pp. 311-312
Jammalamadaka, S. Rao and Sengupta, A. (2001). Topics in Circular Statistics, Sections 3.3.3 and 3.4.1, World Scientific Press, Singapore.
mean_resultant_length()
, circular_mean()
, norm_chisq()
,
kuiper_test()
, watson_test()
, weighted_rayleigh()
# Example data from Mardia and Jupp (2001), pp. 93
pidgeon_homing <- c(55, 60, 65, 95, 100, 110, 260, 275, 285, 295)
rayleigh_test(pidgeon_homing, axial = FALSE)
# Example data from Davis (1986), pp. 316
finland_stria <- c(
23, 27, 53, 58, 64, 83, 85, 88, 93, 99, 100, 105, 113,
113, 114, 117, 121, 123, 125, 126, 126, 126, 127, 127, 128, 128, 129, 132,
132, 132, 134, 135, 137, 144, 145, 145, 146, 153, 155, 155, 155, 157, 163,
165, 171, 172, 179, 181, 186, 190, 212
)
rayleigh_test(finland_stria, axial = FALSE)
rayleigh_test(finland_stria, mu = 105, axial = FALSE)
# Example data from Mardia and Jupp (2001), pp. 99
atomic_weight <- c(
rep(0, 12), rep(3.6, 1), rep(36, 6), rep(72, 1),
rep(108, 2), rep(169.2, 1), rep(324, 1)
)
rayleigh_test(atomic_weight, 0, axial = FALSE)
# San Andreas Fault Data:
data(san_andreas)
rayleigh_test(san_andreas$azi)
data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
rayleigh_test(sa.por$azi.PoR, mu = 135)
Run the code above in your browser using DataLab